Gravitational waves from magnetohydrodynamic turbulence in the early-universe Action Dark Energy 2020 (Oct. 13–15)

Alberto Roper Pol Postdoctoral Researcher

Laboratoire Astroparticule et Cosmologie (APC)

October 14, 2020

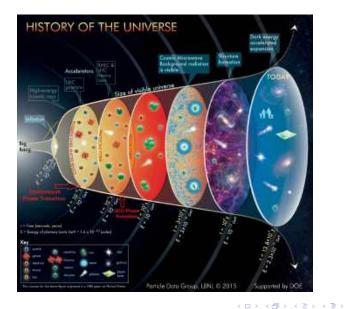
A. Roper Pol et al., Geophys. Astrophys. Fluid Dyn. 114, 130. arXiv:1807.05479 (2020)

A. Roper Pol et al., Phys. Rev. D 102, 083512. arXiv:1903.08585 (2020)

A. Neronov, A. Roper Pol, C. Caprini, D. Semikoz. arXiv:2009.14174 (2020)

- Generation of cosmological gravitational waves (GWs) during phase transitions and inflation
 - Electroweak phase transition $\sim 100~{\rm GeV}$
 - Quantum chromodynamic (QCD) phase transition $\sim 100 \text{ MeV}$
 - Inflation

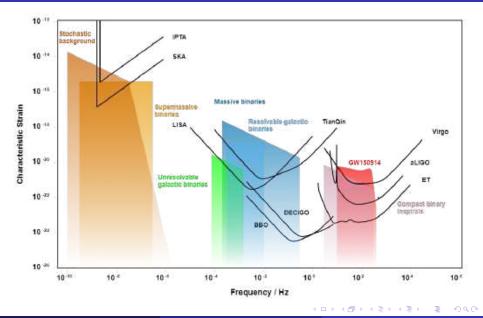
Introduction and Motivation



э

- Generation of cosmological gravitational waves (GWs) during phase transitions and inflation
 - $\bullet\,$ Electroweak phase transition $\sim 100~\text{GeV}$
 - Quantum chromodynamic (QCD) phase transition $\sim 100 \text{ MeV}$
 - Inflation
- GW radiation as a probe of early universe physics
- Possibility of GWs detection with
 - Space-based GW detector LISA
 - Pulsar Timing Arrays (PTA)
 - B-mode of CMB polarization

Introduction and Motivation



LISA

- Laser Interferometer Space Antenna (LISA) is a space-based GW detector
- LISA is planned for 2034
- LISA was approved in 2017 as one of the main research missions of ESA
- LISA is composed by three spacecrafts in a distance of 2.5M km

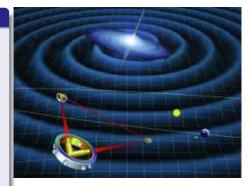
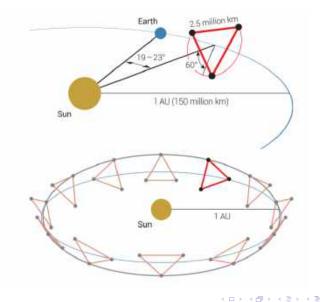


Figure: Artist's impression of LISA from Wikipedia

Orbit of LISA



э

- Generation of cosmological gravitational waves (GWs) during phase transitions and inflation
 - $\bullet\,$ Electroweak phase transition $\sim 100~\text{GeV}$
 - ullet Quantum chromodynamic (QCD) phase transition ~ 100 MeV
 - Inflation
- GW radiation as a probe of early universe physics
- Possibility of GWs detection with
 - Space-based GW detector LISA
 - Pulsar Timing Arrays (PTA)
 - B-mode of CMB polarization
- Magnetohydrodynamic (MHD) sources of GWs:
 - Hydrodynamic turbulence from phase transition bubbles nucleation
 - Primordial magnetic fields
- Numerical simulations using PENCIL CODE to solve:
 - Relativistic MHD equations
 - Gravitational waves equation

Right after the electroweak phase transition we can model the plasma using continuum MHD

- Quark-gluon plasma (above QCD scale)
- Charge-neutral, electrically conducting fluid
- Relativistic magnetohydrodynamic (MHD) equations
- Ultrarelativistic equation of state

$$p = \rho c^2/3$$

• Friedmann-Lemaître-Robertson-Walker model

$$g_{\mu\nu} = \operatorname{diag}\{-1, a^2, a^2, a^2\}$$

Contributions to the stress-energy tensor

$$T^{\mu\nu} = \left(\frac{p}{c^2} + \rho\right) U^{\mu} U^{\nu} + pg^{\mu\nu} + F^{\mu\gamma} F^{\nu}_{\ \gamma} - \frac{1}{4} g^{\mu\nu} F_{\lambda\gamma} F^{\lambda\gamma},$$

- From fluid motions $T_{ij} = (p/c^2 + \rho) \gamma^2 u_i u_j + p \delta_{ij}$ Relativistic equation of state: $p = \rho c^2/3$
- 4-velocity $U^{\mu} = \gamma(c, u^{i})$
- 4-potential $A^{\mu} = (\phi/c, A^i)$
- 4-current $J^{\mu} = (c\rho_{\rm e}, J^i)$
- Faraday tensor $F^{\mu\nu} = \partial^{\mu}A^{\nu} \partial^{\nu}A^{\mu}$

• From magnetic fields: $T_{ij} = -B_i B_j + \delta_{ij} B^2/2$

э

Conservation laws

$$T^{\mu
u}_{;
u} = 0$$

Relativistic MHD equations are reduced to¹

MHD equations

$$\frac{\partial \ln \rho}{\partial t} = -\frac{4}{3} \left(\nabla \cdot \boldsymbol{u} + \boldsymbol{u} \cdot \nabla \ln \rho \right) + \frac{1}{\rho c^2} \left[\boldsymbol{u} \cdot (\boldsymbol{J} \times \boldsymbol{B}) + \eta \boldsymbol{J}^2 \right]$$

$$\frac{\partial \boldsymbol{u}}{\partial t} = \frac{1}{3} \boldsymbol{u} \left(\nabla \cdot \boldsymbol{u} + \boldsymbol{u} \cdot \nabla \ln \rho \right) - \frac{\boldsymbol{u}}{\rho c^2} \left[\boldsymbol{u} \cdot (\boldsymbol{J} \times \boldsymbol{B}) + \eta \boldsymbol{J}^2 \right] - \frac{1}{4} c^2 \nabla \ln \rho + \frac{3}{4\rho} \boldsymbol{J} \times \boldsymbol{B} + \frac{2}{\rho} \nabla \cdot (\rho \nu \boldsymbol{S})$$

for a flat expanding universe with comoving and normalized $p = a^4 p_{\rm phys}, \rho = a^4 \rho_{\rm phys}, B_i = a^2 B_{i,{\rm phys}}, u_i$, and conformal time t.

¹A. Brandenburg, K. Enqvist, and P. Olesen, Phys. Rev. D 54, 1291 (1996) 🕢 🗆 😽 🖉 🖉 🖉 🔍 🔍

MHD equations

Electromagnetic fields are obtained from Faraday tensor as

$$\mathbf{B} = \nabla \times \mathbf{A}, \quad \mathbf{E} = -\nabla \phi - \frac{\partial \mathbf{A}}{\partial t}$$

Generalized Ohm's law

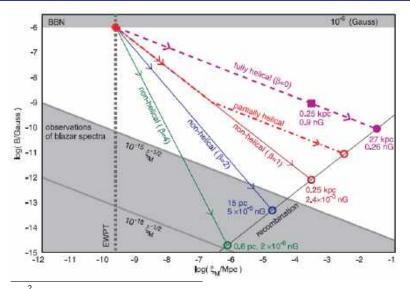
$$\mathbf{E} = \eta \mathbf{J} - \mathbf{u} \times \mathbf{B}$$

 Maxwell equations

 $\nabla \cdot \mathbf{E} = \rho_e c^2$,
 $\nabla \cdot \mathbf{B} = 0$
 $\nabla \times \mathbf{B} = \mathbf{J} + \frac{1}{f^2} \frac{\partial \mathbf{E}}{\partial t}$ $\frac{\partial \mathbf{B}}{\partial t} = -\nabla \times \mathbf{E}$

 Maxwell equations + Ohm's law combined:
 $\frac{\partial \mathbf{B}}{\partial t} = \nabla \times (\mathbf{u} \times \mathbf{B} - \eta \mathbf{J})$

Evolution of magnetic strength and correlation length²



 $^2\text{A}.$ Brandenburg, T. Kahniashvili, S. Mandal, A. Roper Pol, A. Tevzadze,

and T. Vachaspati, Phys. Rev. D 96, 123528 (2017)

Alberto Roper Pol (APC Theory Group) Gravitational waves from the early-universe

October 14, 2020 13 / 26

Gravitational waves equation

GWs equation for an expanding flat Universe

- Assumptions: isotropic and homogeneous Universe
- Friedmann–Lemaître–Robertson–Walker (FLRW) metric $\gamma_{ij} = a^2 \delta_{ij}$
- Tensor-mode perturbations above the FLRW model:

$$g_{ij} = a^2 \left(\delta_{ij} + h_{ij}^{\mathrm{phys}}
ight)$$

GWs equation is³

$$\left(\partial_t^2 - \frac{a''}{a} - c^2 \nabla^2\right) h_{ij} = \frac{16\pi G}{ac^2} T_{ij}^{\mathrm{TT}}$$

- h_{ij} are rescaled $h_{ij} = a h_{ij}^{\text{phys}}$
- Comoving spatial coordinates $abla = a
 abla^{ ext{phys}}$
- Conformal time $dt = a dt^{phys}$
- Comoving stress-energy tensor components $T_{ij} = a^4 T_{ij}^{\rm phys}$
- Radiation-dominated epoch such that a'' = 0

³L. P. Grishchuk, Sov. Phys. JETP, 40, 409-415 (1974)

14 / 26

Normalized GW equation⁴

$$\left(\partial_t^2 - \nabla^2\right)h_{ij} = 6T_{ij}^{\mathrm{TT}}/t$$

Properties

- All variables are normalized and non-dimensional
- Conformal time is normalized with t_{*}
- Comoving coordinates are normalized with c/H_*
- Stress-energy tensor is normalized with $\mathcal{E}^*_{\mathrm{rad}} = 3H_*^2c^2/(8\pi G)$
- Scale factor is $a_* = 1$, such that a = t

⁴A. Roper Pol et al., Geophys. Astrophys. Fluid Dyn. 114, 130. arXiv:1807.05479 (2020)

Properties

- Tensor-mode perturbations are gauge invariant
- h_{ii} has only two degrees of freedom: h^+ , h^{\times}
- The metric tensor is traceless and transverse (TT gauge)

Linear polarization modes + and \times

Linear polarization basis (defined in Fourier space)

$$e_{ij}^+ = (\boldsymbol{e}_1 imes \boldsymbol{e}_1 - \boldsymbol{e}_2 imes \boldsymbol{e}_2)_{ij}$$

$$e_{ij}^{ imes} = (oldsymbol{e}_1 imes oldsymbol{e}_2 + oldsymbol{e}_2 imes oldsymbol{e}_1)_{ij}$$

Orthogonality property

$$e^{A}_{ij}e^{B}_{ij}=2\delta_{AB}$$
, where $A,B=+, imes$

+ and \times modes

$$\begin{split} \tilde{h}^+ &= \frac{1}{2} e^+_{ij} \tilde{h}^{\mathsf{TT}}_{ij}, \qquad \tilde{T}^+ &= \frac{1}{2} e^+_{ij} \tilde{T}^{\mathsf{TT}}_{ij} \\ \tilde{h}^\times &= \frac{1}{2} e^\times_{ij} \tilde{h}^{\mathsf{TT}}_{ij}, \qquad \tilde{T}^\times &= \frac{1}{2} e^\times_{ij} \tilde{T}^{\mathsf{TT}}_{ij} \end{split}$$

A B A B
 A B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

э

GWs energy density:

$$\begin{split} \Omega_{\rm GW} &= \mathcal{E}_{\rm GW} / \mathcal{E}_{\rm crit}^0, \quad \mathcal{E}_{\rm crit}^0 = \frac{3H_0^2 c^2}{8\pi G} \\ \Omega_{\rm GW} &= \int_{-\infty}^{\infty} \Omega_{\rm GW}(k) \,\mathrm{d} \ln k \\ \mathbf{\Omega}_{\rm GW}(\mathbf{k}) &= (a_*/a_0)^4 \frac{k}{6H_0^2} \int_{4\pi} \left(\left| \dot{\tilde{h}}_+^{\rm phys} \right|^2 + \left| \dot{\tilde{h}}_\times^{\rm phys} \right|^2 \right) k^2 \,\mathrm{d}\Omega_k \\ H_0 &= 100 \, h_0 \,\,\mathrm{km \, s^{-1} \, Mpc^{-1}} \\ \frac{a_0}{a_*} &\approx 1.254 \cdot 10^{15} \left(T_* / 100 \,\,\mathrm{GeV} \right) (g_{\rm S} / 100)^{1/3} \end{split}$$

Image: A matrix and a matrix

æ

GWs amplitude:

$$h_{\rm c}^2 = \int_{-\infty}^{\infty} h_{\rm c}^2(k) \,\mathrm{d}\ln k$$
$$\mathbf{h}_{\rm c}^2(\mathbf{k}) = (a_*/a_0)k \int_{4\pi} \left(\left| \tilde{h}_+^{\rm phys} \right|^2 + \left| \tilde{h}_{\times}^{\rm phys} \right|^2 \right) k^2 \,\mathrm{d}\Omega_k$$

Frequency:

$$f = H_*(a_*/a_0)(k/2\pi) \approx 1.6475 \cdot 10^{-5}(k/2\pi) \text{ Hz}$$

for $T_* = 100$ GeV, $g_{
m S} \approx g_* = 100$.

Numerical results for decaying MHD turbulence⁵

Initial conditions

- Fully helical stochastic magnetic field
- Batchelor spectrum, i.e., $E_{
 m M} \propto k^4$ for small k
- $\bullet\,$ Kolmogorov spectrum for inertial range, i.e., ${\it E}_{\rm M} \propto k^{-5/3}$
- ullet Total energy density at t_* is $\sim 10\%$ to the radiation energy density

October 14, 2020

20 / 26

• Spectral peak at $k_{
m M}=100\cdot 2\pi$, normalized with $k_{H}=H/c$

Numerical parameters

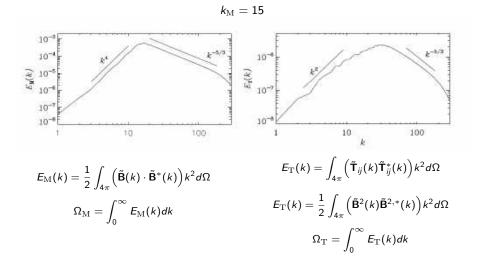
- 1152³ mesh gridpoints
- 1152 processors
- Wall-clock time of runs is $\sim 1-5$ days

⁵A. Brandenburg, et al. Phys. Rev. D 96, 123528 (2017),

A. Roper Pol, et al. Phys. Rev. D 102, 083512 (2020)

Alberto Roper Pol (APC Theory Group) Gravitational waves from the early-universe

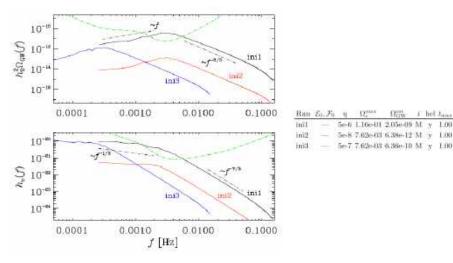
Initial magnetic spectra



October 14, 2020 21

21/26

Numerical results for decaying MHD turbulence



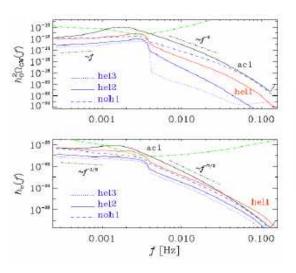
N

100

100

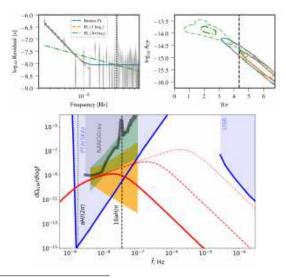
10

Forced turbulence (built-up primordial magnetic fields and hydrodynamic turbulence)



Run	\mathcal{E}_{0} , \mathcal{F}_{0}	17	Ω_1^{mm}	OW.	k	hel	treas	N
hall	1.46-3	54-7	2.176-02	4.43a-00	М	y.	1.10	100
hel2	6.0 ± 4	Se-7	$7.16e{-}03$	$4.07e{-10}$	М	y.	1.10	100
hria	2.0 - 3	5497	4.62e-03	2.09e-10	M	y.	1.01	100
hel4	$1.0e{-1}$	26-6	$3.49e{-0.3}$	1.10e-11	м	y	1.01	1000
nohl	1.40-3	50-7	1.44e-02	3.106-09	М	\mathbf{n}	1.10	100
noh2	8.00-4	2s.6	$4.86e{-03}$	3.466-31	M	-11	1.10	100
art	3.0	$2i_{2}$	1.33e-02	5,006-08	K	n	1.10	100
ac2	3.0	54-5	1.006-02	3,520-08	K	10	L.10	100
ne3	1.0	5e-6	$2.87e{-}03$	2,75e-00	K	ħ.	1.10	100

NANOGrav observation QCD phase transition⁶



⁶NANOGrav collaboration, arXiv:2009.04496 (2020)

A. Neronov, A. Roper Pol, C. Caprini, D. Semikoz. arXiv:2009.14174 (2020) < 🗆 🕨 🌾 🚍 🕨 🗧

Alberto Roper Pol (APC Theory Group) Gravitational waves from the early-universe

- For some of our simulations we obtain a detectable signal from EWPT by future GW detector LISA.
- GW equation is normalized such that it can be easily scaled for different times within the radiation-dominated epoch
- Novel *f* spectrum obtained for GWs in high frequencies range vs *f*³ obtained from analytical estimates (above horizon scales)
- Bubble nucleation and magnetogenesis physics can be coupled to our equations for more realistic production analysis.
- Potential detection by NANOGrav
- Information on large-scale relic magnetic fields with cosmological origin

The End Thank You!

roperpol@apc.in2p3.fr

Alberto Roper Pol (APC Theory Group) Gravitational waves from the early-universe

October 14, 2020

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

26 / 26