RÉSUMÉ SESSION THÉORIE

Photon energy-momentum tensor (with or without SuSy)

$$\theta^{\alpha}_{\ \rho} = \frac{1}{\mu_0} \left(f^{\alpha\nu} f_{\nu\rho} + \frac{1}{4} \delta^{\alpha}_{\rho} f^2 - \frac{1}{2} k^{\text{AF}}_{\rho} {}^* f^{\alpha\nu} a_{\nu} + k^{\alpha\nu\kappa\lambda}_{\text{F}} f_{\kappa\lambda} f_{\nu\rho} + \frac{1}{4} \delta^{\alpha}_{\rho} k^{\kappa\lambda\alpha\beta}_{\text{F}} f_{\kappa\lambda} f_{\alpha\beta} \right) , \tag{11}$$

and its non-conservation

$$\partial_{\alpha}\theta^{\alpha}_{\ \rho} = j^{\nu}f_{\nu\rho} - \frac{1}{\mu_{0}} \left[\left(\partial_{\alpha}F^{\alpha\nu} \right) f_{\nu\rho} + k_{\alpha}^{AF} *F^{\alpha\nu}f_{\nu\rho} + \frac{1}{2} \left(\partial_{\alpha}k_{\rho}^{AF} \right) *f^{\alpha\nu}a_{\nu} - \frac{1}{4} \left(\partial_{\rho}k_{F}^{\alpha\nu\kappa\lambda} \right) f_{\alpha\nu}f_{\kappa\lambda} + \left(\partial_{\alpha}k_{F}^{\alpha\nu\kappa\lambda} \right) F_{\kappa\lambda}f_{\nu\rho} + k_{F}^{\alpha\nu\kappa\lambda} \left(\partial_{\alpha}F_{\kappa\lambda} \right) f_{\nu\rho} \right] .$$

$$(12)$$

Table: Simulation results for $\Omega_{\rm rad}=\Omega_{\rm k}=\Omega_{\Lambda}=0$ and $\Omega_{\rm m}=0.28$. The large value of the error on k_i is due to the Hierarchical Bayesian Model (HBM) approach, considering different source of uncertainties to render homogeneous the photometric data of the distance modulus from different catalogues. The simulation results provide a mean $z_{\rm LSV}$ blue-shift for types 1 and 2 and a $z_{\rm LSV}$ red-shift for type 3.

Туре	1	2	3
k _i	$2.8 \times 10^{-5} \pm 3.5 \times 10^{-3}$	$2.6 \times 10^{-5} \pm 2.8 \times 10^{-3}$	$<-10^{-6}\pm1.3\times10^{-3}$
rms	1.34×10^{-2}	1.31×10^{-2}	1.05×10^{-1}

D. Spallici

Free fall beyond GR

1. Non-universal coupling to gravity

$$S = S_{\mathrm{SM}}[\boldsymbol{\psi}_i; \boldsymbol{g}_1] + S_{\mathrm{DM}}[\boldsymbol{\chi}; \boldsymbol{g}_2]$$

2. Violation of the strong equivalence principle

$$\neq$$

BH

3. Screened fifth force

Generalised Euler's equation

$$V' + \mathcal{H}[1 + \Theta(\eta)]V + [1 + \Gamma(\eta)]\Psi = 0$$

quantify deviations from Euler

opposite sign

$\langle \Delta(\boldsymbol{x}_1) \Delta(\boldsymbol{x}_2) \rangle \ni \langle \Delta_{\rm st}(\boldsymbol{x}_1) \Delta_{\rm rel}(\boldsymbol{x}_2) \rangle \propto \langle b\delta(\boldsymbol{x}_1) V_r(\boldsymbol{x}_2) \rangle$

$$\begin{split} \langle \Delta(\boldsymbol{x}_1) \Delta(\boldsymbol{x}_2) \rangle \ni \langle b \delta(\boldsymbol{x}_1) V_r(\boldsymbol{x}_2) \rangle + \underbrace{\langle V_r(\boldsymbol{x}_1) b \delta(\boldsymbol{x}_2) \rangle}_{\text{Same dipole,}} \end{split}$$

Correlation function

$$\xi(\boldsymbol{x}_1, \boldsymbol{x}_2) \equiv \langle \Delta(\boldsymbol{x}_1) \Delta(\boldsymbol{x}_2) \rangle$$

[McDonald 2009] The two-population trick [Bonvin, Hui, Gaztañaga, 2013]

$$\langle \Delta_{\rm B}(\boldsymbol{x}_1) \Delta_{\rm F}(\boldsymbol{x}_2) \rangle \ni b_{\rm B} \langle \delta(\boldsymbol{x}_1) V_r(\boldsymbol{x}_2) \rangle + b_{\rm F} \langle V_r(\boldsymbol{x}_1) \delta(\boldsymbol{x}_2) \rangle$$
 bright galaxies net dipole, proportional to $b_{\rm B} - b_{\rm F}$

faint galaxies

Modified Euler

$$V' + \mathcal{H}[1 + \Theta(z)]V + [1 + \Gamma(z)]\Psi = 0$$

In principle, the linear growth changes

$$D(z) = D_{\rm GR}[1 + \mu(z)]$$

Standard parametrisation: for $p = \Theta, \Gamma, \mu$

$$p(z) = \frac{\Omega_{\Lambda}(z)}{\Omega_{\Lambda 0}} \, p_0$$

$$\Delta\Gamma_0 = 0.26 \quad (1\sigma)$$

SKA

Comparison: with DESI $\ \Delta\Gamma_0=1.9\ \ (1\sigma)$

We need a generalization of Newtonian gravity for two particles species

Type of matter	Type of matter	Interaction
+	+	Attraction
_	_	Repulsion
_	+	Repulsion
+	_	Repulsion

- Antimatter spreads uniformly
- Matter coalesces into structures

Cannot be realized with a single Poisson's equation

$$\Delta \phi_{+} = 4\pi G m (+n_{+} - n_{-})$$

 $\Delta \phi_{-} = 4\pi G m (-n_{+} - n_{-})$

Open question: how to incorporate this approach into General Relativity

- · Bimetric theory?
- Structure formation occurs for Dirac-Milne too
 - Earlier and faster compared to EdS
- Importantly, structure formation in the Dirac-Milne universe stops after a few billion years
 - Qualitatively similar to ΛCDM universe

G. Manfredi

Strong tension between early and late universe probes of H₀.

S. Galli

Indirect measurement of the Hubble constant from the CMB

Calculate the physical dimension of sound horizon assumes model for sound speed and expansion of the universe before recombination (after measuring ω_m and ω_b)

Infer the distance to the last scattering surface, which depends on H₀ Friedmann equation, infer H₀

Expansion rate after recombination

$$H^{2}(z) = H_{0}^{2}(\Omega_{m}(z+1)^{3} + \Omega_{DE} + ..)$$

Model dependent!

The Hubble Constant in 3 Steps: Present Data

Tip of the red giants branch

- Measure of the position of the brightest luminosity of Red Giants before helium flash (when helium core starts fusion), which is used as a standard candle.
- Used instead of cepheids to calibrate SnIA in second rung of the ladder.
- Brightness calibrated by measuring TRGB in the LMC, whose distance is determined from detached eclipsing binaries.
- CCHP program uses Carnegie Supernova Project I (CSP-I) sample containing about 100 well- observed SNe Ia, independent of Sh0ES program.
- In agreement both with Planck (1.2 σ) and SnIA+cepheids (1.7 σ).

Early and late time solutions

- 1. Change in late time universe
 - (late-time dynamics of dark matter and/or dark energy, e.g. dynamical dark energy, decaying DM (Poulin+ 2018, Vattis+ 2019) interacting dark matter-dark energy etc..) => highly constrained by BAO, Supernovae and other probes.
 - Modified gravity changes to Cepheid period-luminosity relation (Desmond et al. 1907.03778)=> but might be constrained by time delays.
 See also e.g. Bernal +2016, Lemos+ 2018, Aylor 2018
- 2. Change in the early time physics. BAO and CMB measure angles, assuming calculation of sound horizon r_s.one can infer the distances and thus H₀=> changing r_s can change inferred H₀, but hard because usually these models impact other observables as well.

Galileon status

- Status of the general galileon model (see Leloup et al. 2019):
 - No galileon model can fit all cosmological data (especially BAO)

C. Leloup

- Full galileon model excluded by GW170817
- Nevertheless, non-tracker exploration useful

What is left?

$$L = K + G_3 \Box \phi + G R + \frac{3G_X^2}{2G} \phi^{\mu} \phi_{\mu\rho} \phi^{\rho\nu} \phi_{\nu}$$

$$\alpha_K \alpha_B \alpha_M \beta_1$$

What about:

- 1 Screening
- 2 Self-acceleration

M. Crisostomi

Self-acceleration

$$L = K + G_3 \Box \phi + G R + \frac{3G_X^2}{2G} \phi^{\mu} \phi_{\mu\rho} \phi^{\rho\nu} \phi_{\nu}$$

[MC, Koyama]

[MC, Koyama, Langlois, Noui, Steer]

Background effect

$$K = c_2 X$$
, $G_3 = \frac{c_3}{\Lambda^3} X$, $G = \frac{M_P^2}{2} + \frac{c_4}{\Lambda^6} X^2$ $c_2, c_3, c_4 \sim \mathcal{O}(1)$

$$c_2, c_3, c_4 \sim \mathcal{O}(1)$$

